随着便携设备与智能手机的发展,高清晰度、高灵敏度、大尺寸的触摸屏也随之高速发展。为了满足需要,触摸屏的发展必须导入更薄或架构更精简的触控设计方案,以达到越来越灵敏,同时越来越贴合产品的要求。今天OFweek电子工程小编为你总结一下最新的触控屏相关技术,以方便读者...
触控设计 In-cell、On-cell、OGS对比
In-cell、On-cell、OGS 都在积极改善面板厚度,在触控追求薄化的今天,它们谁更有优势?早期屏幕触控解决方案相当多,如电阻式、光学式、电容式等技术多元且分歧,虽然在成本上,电阻式触控屏方案在材料成本表现极具优势,但却在透光率、耐用度与需进行触点校准等使用限制,使得发展进阶应用时造成产品设计受限;而光学式的触点侦测、多触点追踪、系统反馈速度等问题,目前仅在中/大尺寸触控应用较具优势,小尺寸应用则受到电容式触控技术大幅挤压。
不同的触控技术集成显示屏幕模块方法
嵌入式触控设计可让显示屏幕集成触控且大幅薄化模块厚度
手机平板热卖 带动电容触控显屏应用需求
从多年由Apple iOS Device带动电容触控应用热潮开始,让使用者体验了电容式触控更好的屏幕显示效果与相对更精准的触点侦测精度,尤其是多触点侦测、追踪应用支持,还可让电子产品发展更多电玩、娱乐应用用途,甚至在系统底层集成的多触点触控使用者接口,让终端产品可创造最佳使用者经验的设计境界。
但电容触控架构需要在原本的LCD显示架构中,增加侦测触点的额外设计,为了保护LCD内的精密架构,保护玻璃的强度也必须对应提升,以增加整体LCD显示模块的使用强度,甚至改善触控面本身的触按应用强度,但如此一来也会造成电容式触控初期设计在屏幕模块的制程较繁复、成本较高问题。
此外,终端产品的制作厚度,也会因为LCD触控屏无法积极薄化,而使得产品在薄化设计趋势下无法达到有效的改善效益。
电容式触摸屏设计难点及注意事项
对触摸屏性能影响最为深远的技术改变要算是从电阻式转移至电容式触摸屏技术。根据市调机构iSuppli预测,到2011年前,近25%的触摸屏手机将由电阻式转移至电容式触摸屏。电容式触摸屏技术带来的各种效益,将促使市场快速成长。
传统的电阻式触控面板在感测到手指或触控笔时,顶层柔性透明材料被下压,接触到下方的导电材料层;而投射式电容屏没有可移动部件。事实上,投射式电容感 测硬件包含玻璃材质的顶层,之后是X与Y轴的组件,以及覆盖在玻璃基板上的氧化铟锡(ITO)绝缘层。部分传感器供货商会做一颗单层传感器,内嵌X与Y轴 传感器和小型桥接组件于一单层ITO之中,当手指或其它导电物体靠近屏幕时,就会在传感器与手指之间产生一个电容。相对于系统而言,此电容相当小,但可利 用多种技术测出此电容。
其中一种技术是采用TrueTouch组件,包括快速改变电容,并利用一个泄放电阻来测量放电时间。这种全玻璃 的触控表面带给使用者光滑流畅的触感。终端产品制造商也偏爱玻璃屏,因为玻璃材质会让终端产品拥有线条美观的工业设计感,并能为测量触控提供优质的电容信 号。最后,不仅要考虑触控面板的外观,了解其运作模式也相当重要。为设计出性能优良的触摸屏产品,必须注意以下参数。
精确度:精确度可定义为,在一个预先定义的触摸屏区域中最大的定位误差,以手指的实际位置与测量位置之间的直线距离为单位。在测量精确度时,使用的是一只模拟或机械手指。 手指置于面板上的一个准确位置,再把手指实际位置与测量位置进行比较。精确度非常重要,使用者希望系统能准确地找到手指位置。电阻式触摸屏最令人诟病的一 项缺点,就是低准确度,而且准确度会随时间逐渐减弱。电容式触摸屏的精确度创造出许多新应用,例如虚拟键盘,以及不用触控笔的手写辨识。图1显示一个结构 不完整的触控面板数据,显示手指位置有游移现象,而实际上模拟手指是进行直线移动。
图1 范例显示在触控面板追踪中的不准确度或误差
手指间距:手指间距定义为,当触摸屏控制器测量两只手指的位置时,两只手指中心点之间在屏幕上的最短距离。手指间距测量方法(图2),是将两个模拟或机械手指置于面板上,然后逐渐拉近两只手指的距离,直到系统测到两只手指为一只手指为止。有些触摸屏供货商的手指间距是指边缘至边缘的距离,有些则 是中心点之间的距离。10毫米机械手指的10毫米手指间距,表明有多只手指触碰到屏幕,或是手指之间的距离为10毫米,实际状况取决于触控控制器的规格定 义。如果没有良好的手指间距,就无法设计出多点触控解决方案。对于仿真键盘而言,手指间距尤其重要,因为一般在使用仿真键盘时,手指在屏幕上的间距通常很 短。
图2 测量手指间距
响应时间:响应时间定义为,触摸屏上手指触碰事件与触摸屏控制器产生中断信号之间的时间。测量方法是以电子触动仿真手指触摸屏的环境,或在面板上移动一 只模拟手指。响应时间尤其重要,因为它直接影响用户在屏幕上移动手指的速度;进行平移或轻弹的操作;用手指或笔在屏幕上书写。响应时间缓慢的触控面板,会 有短暂停顿和侦测不到移动动作的情况。
如何解决电容式触摸屏应用中的噪声问题
触摸屏设备可能会在一天中受到许多不同噪声源的干扰,既包含内部噪声也包含外部噪声。充电器和显示器噪声是当今两种最常见的问题噪声源。随着市场上的充电设备变得越来越轻薄、噪声越来越大,这种挑战只会变得更加难以管理。此外,许多其他日常物件也会产生噪声,引起干扰,如无线电信号、交流电源乃至荧光灯镇流器等。在存在噪声的情况下,低性能电容式触摸系统报告的位置可能失真,从而影响准确度和可靠性。
今天的触摸屏控制器采用各种不同的方法来提高信噪比,并从噪声中过滤出不良数据,这些方法包括片上生成高压发射信号、专业化硬件加速、高频发射、自适应跳频技术以及饱和防治技术。但是,触摸技术不断持续发展,涉及的方面包括:触摸控制器如何利用上述特性,如何动态地适应于系统中存在的噪声,以及如何在变化的环境条件下准确进行触摸跟踪。
注入噪声造成的影响包括较大抖动(针对非移动手指报告的触摸坐标变动很大)、没有手指接触屏幕却误报有手指触摸、手指触屏时却不报告手指存在,而且甚至会造成设备完全锁死等。如果以触摸屏手机为例,这意味着无法对手机进行解锁(因为无法报告手指的操控),或者由于抖动或错误触摸而拨错号码(本想深夜打给朋友的电话,结果却错拨给了老板,这问题可不小)。图1显示了使用目前市场上最畅销的智能手机测试手指追踪所获得的结果(例如,用一个手指画一个圈)。随着噪声的增加,手指在面板上的位置报告(如蓝色所示)会出错,而且会在面板上检测到错误的触摸(其他颜色所示)。
触摸屏控制器如何应对噪声影响,会对用户触摸界面的质量体验造成重大影响。在噪声条件下触摸性能不佳,可能会导致客户不满,进而增加退货量。由于各种噪声之间存在差别,触摸屏控制器需要能够检测、区分并应对这些噪声,特别是两种最容易引起问题的噪声源:充电器和显示屏噪声。
图解触摸屏的电磁干扰问题
开发具有触摸屏人机界面的移动手持设备是一项复杂的设计挑战,尤其是对于投射式电容触摸屏设计来说更是如此,它代表了当前多点触摸界面的主流技术。投射式 电容触摸屏能够精确定位手指轻触屏幕的位置,它通过测量电容的微小变化来判别手指位置。在此类触摸屏应用中,需要考虑的一个关键设计问题是电磁干扰 (EMI)对系统性能的影响。干扰引起的性能下降可能对触摸屏设计产生不利影响,本文将对这些干扰源进行探讨和分析。
投射式电容触摸屏结构
典型的投射式电容传感器安装在玻璃或塑料盖板下方。图1所示为双层式传感器的简化边视图。发射(Tx)和接收(Rx)电极连接到透明的氧化铟锡 (ITO),形成交叉矩阵,每个Tx-Rx结点都有一个特征电容。Tx ITO位于Rx ITO下方,由一层聚合物薄膜或光学胶(OCA)隔开。如图所示,Tx电极的方向从左至右,Rx电极的方向从纸外指向纸内。
图1:传感器结构参考
传感器工作原理
让我们暂不考虑干扰因素,来对触摸屏的工作进行分析:操作人员的手指标称处在地电势。Rx通过触摸屏控制器电路被保持在地电势,而Tx电压则可变。变化的 Tx电压使电流通过Tx-Rx电容。一个仔细平衡过的Rx集成电路,隔离并测量进入Rx的电荷,测量到的电荷代表连接Tx和Rx的“互电容”。
传感器状态:未触摸
图2显示了未触摸状态下的磁力线示意图。在没有手指触碰的情况下,Tx-Rx磁力线占据了盖板内相当大的空间。边缘磁力线投射到电极结构之外,因此,术语“投射式电容”由之而来。
图2:未触摸状态下的磁力线
人机界面--触摸屏常见故障解析
触摸屏(touchscreen)又称为“触控屏”、“触控面板”,是一种可接收触头等输入讯号的感应式液晶显示装置,作为一种最新的电脑输入设备,它是目前最简单、方便、自然的一种人机界面,它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。
相信很多人在使用触摸屏时,都遇到触摸屏因出现故障而不能使用的情况。这主要是由于触摸屏是一种比较精密的设备,加之触摸屏面向大众开放使用的性质,其使用频率高、使用人员素质良莠不齐,从而造成其故障频繁出现,下面就为大家介绍触摸屏一些常见故障的解决与维护方法:
当触摸屏出现故障后,应首先检查控制卡供电是否正常,Windows驱动是否正常安装,然后检查是否完成了Windows下的触屏校准,“TouchscreenControl”中的参数是否正确,还需要检查串口是否正常和串口线是否连接正常。
下面通过一些实例来说明触摸屏故障的诊断处理方法。
1.触摸屏不准
[故障现象]
一台表面声波触摸屏,用手指触摸显示器屏幕的部位不能正常地完成对应的操作。
[故障分析处理]
这种现象可能是声波触摸屏在使用一段时间后,屏四周的反射条纹上面被灰尘覆盖,可用一块干的软布进行擦拭,然后断电、重新启动计算机并重新校准。还有可能是声波屏的反射条纹受到轻微破坏,如果遇到这种情况则将无法完全修复。
如果是电容触摸屏在下列情况下可运行屏幕校准程序: (开始--程序--MicrotouchTouchware)
1)第一次完成驱动软件的安装。
2)每次改变显示器的分辨率或显示模式后。
3)每次改变了显示的显示区域后。
4)每次调整了控制器的频率后。
5)每次光标与触摸点不能对应时。
校准后,校准后的数据被存放在控制器的寄存器内,所以每次启动系统后无需再校准屏幕。
简单介绍电磁式触摸屏
最近几天关于电磁式触摸屏的消息突然多了起来,显示有同方科技因为原笔迹数字书写技术而收购了E人E本,后又有三星看好汉王的电磁式触摸屏技术而探讨可合作的可能性。那么究竟什么是电磁屏,什么是电磁式触摸屏,电磁式触摸屏原理是什么呢?
我们整理了一些相关的信息发布上来,希望对你了解什么是电磁屏,什么是电磁式触摸屏,电磁式触摸屏原理有所帮助。
电磁式触控自1964年即问世,1970至1980年代用于智慧型数位板,许多高阶电脑辅助绘图(CAD)系统像是AutoCAD使用广泛,并且当年的苹果电脑也用作AppleII的配备。
市场上主要电磁式技术的代表厂商,第一大的Wacom以自有品牌为主,2009年前3季度营收为81亿台币,产品定价较高,解析度可以做到5,000lpi;该公司早期即致力于高精度具绘图功能的CAD/CAM市场,现在也提供100吋大尺寸的产品。事实上,以电磁式技术可以用拼接的方式,可以说完全没有尺寸上的限制。N-Trig为元件供应商,成本相对最高。太瀚成立于2004年,产品单位成本低;电磁式10吋以上的成本低,若10吋以下则电阻式较有价格优势。
电磁感应触控技术分为2大类,一为被动式,又称为无电池笔技术,Wacom主导市场,其主专利在2007年11月过期;太瀚是台湾唯一开发出被动式电磁感应触控方案的厂商。电动牙刷也近似被动式电磁感应技术,只是电转换不佳,相当耗电。二为主动式,笔需要置入电池,发射讯号。笔的体积、重量受限于电池大小,除Wacom外,其他台厂或美国厂商都是主动式的技术。主动式电磁感测其电磁笔会主动发射特定频率的电磁讯号至数位板上X/Y轴天线阵列,数位板下方则设有一片金属层。
被动式电磁感测的电磁笔内不需装电池而有共振电路,数位板经由天线发射交流的电磁场,电磁笔接收交流电磁场的能量并储存起来,接着由电磁笔发射电磁讯号回数位板;数位板和笔有着双向天线,数位板下方同样也设有一片金属层。缺点为能量转换效率低于1/200。
比较主动式与被动式,主动式在省电、感测距离和杂讯、纪录率方面较有优势,被动式则在方便性和笔的重量上具优势,然而,使用者是否感到好用才是最关键所在,被动式具有人机介面上的优势。
不同于Wacom的被动式解决方案采用可变电容原理,太瀚利用可变电感,不需要额外的直流稳压器,也不需要调变IC,且利用笔尖推动铁粉心,使用漆包多股铜线,笔内有2个铁磁心,工作频率约375KHz,随压力变化。
电磁屏与电阻屏、电容屏哪个更好?
与电阻屏和电容屏相较,电磁式手写触控的透光度可达100%,电阻或电容则约80~90%;电磁式为后置式不易损坏、且具备滑鼠功能,适合Windows架构的介面、解析度高、有PalmRejection防误触功能、具1024阶压感功能、系统整合成本低,反应速度快、而且不像电阻和电容式在大尺寸开发上遇到瓶颈且成本过高,电磁式单机已经做到100吋。
尺寸和价格关系来看,电磁式和电阻、电容式刚好相反,愈大尺寸单位成本愈低,电阻或电容式则是尺寸愈大单位成本愈高;总的来说,8至10吋以下以电阻或电容式具优势,8至10吋以上则以电磁式具价格优势。
电磁式触摸屏应用市场
电磁式触控主要应用市场包括使用USB介面最多的笔式Tablet、常用于教育市场的Tablet显示器、亚洲市场正在成长的电子白板、使用于电子商务的签名板、POS,还有增加手写功能的电子书阅读器,三星产品即内建电磁式感测模组,可以提供做笔记、记事本功能、TabletPC、及Tablet&Book。电子书阅读器被认为是近年成长相当快速的市场,并且朝软性显示器发展的趋势明显。电磁式触控模组具备可挠曲的特性,可以搭配软性显示器;虽然需使用笔被认为是缺点,但是笔尺寸小,可以整合进系统。
太瀚估计,电磁式触控技术潜在市场估计以电子书和TabletPC成长最受瞩目,2010至2012都有接近倍数的成长,总出货量可望由2010年的990万成长到2011年的1,470万,2012年达2,480万。太瀚目前专利数已达117件,具备核心技术优势。