当前位置:首页 > 触控技术 > 触摸屏技术
触摸屏技术

电容式多点触摸技术

       多点触控技术随着iPhone的火爆让人们所熟知和关注,传统的电阻式触控技术也逐渐被LLP技术和电容式触控技术所取代。虽然途拓科技专注于大尺寸触控技术和LLP技术,但是对于电容式触控技术也有所涉猎。本文主要就电容式触控技术的几个分类做简要分析。


 

       多点触控示意图
       要进行多点触控的技术操作,必然经过一个载体才能够完美实现,这就是我们今天所面对的屏幕。以手机这个大家熟知的产品为例,目前在手机领域具有触控屏设计的手机已经占领绝大部分,也就是我们现在用的手机大多数都是可以进行触控指令来完成操作的。典型的例子有:诺基亚的5800XM、苹果的iPhone、或者索尼爱立信的X10等,但是有没有想过为什么诺基亚的5800XM与苹果iPhone 4不能够站在一个级别上?究其原因有很多种,其中一点必须被我们承认:即它们都是触控屏手机,屏幕材质选用不一样导致最终产品定位的高低。前者选用电阻屏只能进行单点触控,后者搭配电容屏能够多点触控,分辨率更高、显示效果更为清晰、娱乐性更多等。这也是电阻式触控技术逐渐被电容式技术取代的原因。
       看来在屏幕选材方面,也是能够定义该机是否处于高端水平的一个衡量标准。但是又有疑问被我们发现,即:iPhone手机与索尼爱立信X10同为电容屏,为什么前者能够多点触控,后者亦不能?诺基亚5800XM不能多点触控,是其电阻屏原因,那么X10又是电容屏为什么不能进行多点触控,软件还是硬件?同样,iPhone 4既然支持多点触控,那么两者主要区别在哪里?这就要说说电容触控技术的几大分类。
       电容触控技术分类
       电容屏技术主要分两种:表面电容(Surface Capacitive)技术;投射电容(Projective Capacitive)技术。
       表面电容(Surface Capacitive)技术,即它的架构相对简单,采用一层ITO玻璃为主体,外围至少有四个电极,在玻璃四角提供电压,在玻璃表面形成一个均匀的电场,当使用者进行触按操作时,控制器就能利用人体手指与电场静电反应所产生的变化,检测出触控坐标的位置。此类架构决定了表面电容式技术无法实现多点触控功能,因为它采用了一个同质的感应层,而这种感应层只会将触控屏上任何位置感应到的所有信号汇聚成一个更大的信号,同质层破坏了太多的信息,以致于无法感应到多点触控。另外,表面电容式触控屏还存在小型化的困难,很难应用于手机屏幕,大多用于中大尺寸领域。(该技术在手机应用方面很难实现,排除X10、iPhone 4)


 

       表面电容应用
       投射电容(Projective Capacitive)技术,它的基本技术原理仍是以电容感应为主,但相较于表面电容式触摸屏,投射电容式触摸屏采用多层ITO层,形成矩阵式分布,以X轴、Y轴交叉分布做为电容矩阵,当手指触碰屏幕时,可通过X、Y轴的扫描,检测到触碰位置电容的变化,进而计算出手指之所在。基于此种架构,投射电容可以做到多点触控操作。

 投射电容的应用


       投射电容的应用
       投射电容的触控技术主要有两种:一种是自电容型(self capacitance,也称absolute capacitance),另一种为互电容型(mutual capacitance,也称transcapacitance)。自电容型是指触控物与电极间产生电容耦合,并量测电极的电容变化确定触碰发生;互电容型则是当触碰发生,会在邻近2层电极间产生电容耦合现象。
       根据这两种原理,可以设计不同的投射电容式架构,不同架构能做到的多点触控功能也就不同。多点触控其实可细分为两种:一种是手势辨识追踪与互动(Gesture interaction),也就是仅侦测、分辨多点触控行為,如缩放、拖拉、旋转…等,实现方式为轴交错式(Axis intersect)技术;另一种则是找出多点触控个别位置,此功能需要复杂触点可定位式(All point addressable;APA)技术才能达成。

投射电容实际应用


       投射电容实际应用
       轴交错式
       轴交错式(又称Profile-based)技术,是在导电层上进行菱形状感测单元规划,每个轴向需要1层导电层。以2轴型式为例,触控侦测时,感测控制器会分别扫描水平/垂直轴,产生电容耦合的水平/垂直感测点会出现上升波峰(peak),而这2轴交会处即正确触控点。由于每次量测为利用单导电层与触碰物电容耦合现象,因此属自电容型技术。
       轴交错式电容式触控技术,其实正是笔记型电脑触控板(touch pad)的实现技术,技术相当成熟,但触控板与触控屏幕最大差异在于,前者是不透明、后者是透明的。因为不透明,所以触控板可在感测区使用金属或碳原子式电极。投射电容式触控屏幕则是透明的,因此需用透明ITO做为导电电极,而且此层ITO不像电阻式或表面电容式是均匀导电层,而需要做样式化设计。

 笔记本触控板
笔记本触控板

       单点触控应用上,轴交错式能得到确切触控位置,因此不像表面电容式需经校准修正。透过一些演算法,轴交错式也能做到多点触控手势辨识功能,但若要定位多点触控正确位置会有困难。以2轴的扫描来说,2个触控点分别会在X轴与Y轴各产生2个波峰,交会起来就产生4个触点,其中2个点是假性触控点(Ghost point),这将造成系统无法进行正确判读。

       不过,仍有方法能解决多点定位问题。在2轴式触控屏幕中,可以利用2根手指触控时间差分辨前/后触点,或以触点的不同移动方向辨别。此外,也可增加轴向提高可辨识触点位置、数目,每增加1轴向可多辨识1点(如3轴可辨识2点、4轴为3点);不过,每增加1个轴向,就要多1层导电层,这会增加设计的触控面板厚度、重量与成本,这都不是可携式产品乐见的结果。

       触点可定位式
       触点可定位式(All point addressable)技术则能达成多点触控功能,且能辨别触控点确切位置,可以说是理想的多点触控解决方案,iPhone即是采用此种触控技术。它主要架构为两层导电层,其中一层为驱动线(driving lines),另一层为感测线(sensing lines),两层的线路彼此垂直。运作上会轮流驱动一条驱动线,并量测与这条驱动线交错的感测线是否有某点发生电容耦合现象。经逐一扫描即可获知确切触点位置。
       Multi-Touch All-Point基于互电容的检测方式,而不是自电容,自电容检测的是每个感应单元的电容(也就是寄生电容Cp)的变化,有手指存在时寄生电容会增加,从而判断有触摸存在,而互电容是检测行列交叉处的互电容(也就是耦合电容Cm)的变化,如图2所示,当行列交叉通过时,行列之间会产生互电容(包括:行列感应单元之间的边缘电容,行列交叉重叠处产生的耦合电容),有手指存在时互电容会减小,就可以判断触摸存在,并且准确判断每一个触摸点位置。

iPhone 4
iPhone 4

       但是,要实现此种技术不论是导电层规划、布线或CPU运算,难度都提高许多,需要采用更加强大的处理器。以iPhone为例,它就是以两颗独立芯片分担这项工作,一颗感测控制器,将原始模拟感测信号转为X-Y轴坐标;另一颗则是ARM7处理器,专门用来解读这些信息,辨识手指动作,并做出相应的反应。此外,复杂触点可定位技术还会面临一些设计上挑战,如需要供应高电压才能得到较好的信噪比表现,不适合在大尺寸面板使用等,这也是iPhone没能采用4.0级别屏幕原因之一。
       当然,还有另一种多点触控方式,即Multi-Touch Gesture,通俗地讲,就是多点触摸识别手势方向。我们现在看到最多的是Multi-Touch Gesture,即两个手指触摸时,可以识别到这两个手指的运动方向,但还不能判断出具体位置,可以进行缩放、平移、旋转等操作。这种多点触摸的实现方式比较简单,轴坐标方式即可实现。把ITO分为X、Y轴,可以感应到两个触摸操作,但是感应到触摸和探测到触摸的具体位置是两个概念。XY轴方式的触摸屏可以探测到第2个触摸,但是无法了解第二个触摸的确切位置。单一触摸在每个轴上产生一个单一的最大值,从而断定触摸的位置,如果有第二个手指触摸屏面,在每个轴上就会有两个最大值。这两个最大值可以由两组不同的触摸来产生,于是系统就无法准确判断了。
 


相关文章
精彩评论:
0  相关评论