nbsp; 触控屏幕操控,并不是iPhone或iPod Touch才拥有的特点,早在多年前,触控屏幕已经广泛被用于如工控计算机、POS端点计算机、手持式PDA、博奕机台、嵌入式系统…等计算机设备,这些应用区块的特点是,多半是应用环境不方便使用键盘、鼠标进行输入,或是根本就是仅需简单的按键输入搭配操作,利用触控面板救能解决一大半的操作需求,待需要进阶操控、微调设定时,再利用键盘/鼠标搭配操作。
早期触控屏幕技术发展,由于受限使用区块的用量较少,很难透过大量生产压低面板成本,搭配的技术多半是利用现有液晶或是CRT显示器(面板),在屏幕上头直接加挂触控控制膜或是触控感应组件,基本显示功能很容易因此而减损视觉效果!早期技术 多半选用成本较低的电阻式触控技术,而电阻式触控概念整合的触控技术,容易因为长期使用让其接触端点磨损,减损触控感应讯号处理速度与质量。
我们对这类触控屏幕操作,多半会有很不好的使用经验,例如,触控输入和实际感应位置产生偏移?或是触控压按屏幕反应迟缓、不明确?甚至是触控反应时有时无,让使用者不断尝试加大指压力道!种种的问题,让旧式设计的触控屏幕处于不断被蹂躏、过度操作的现状下,不仅使用者不满意,对于整合应用的业者,也尽可能避免整合这类功能,改用如轨迹球、光笔…等另类输入装置解决不利使用键盘/鼠标的操控需求。
改良触控技术 操作应用更直觉
目前CE或IT设备,常用的触控屏幕技术共有5大类:电阻式、表面电容式、投射电容式、表面声波式与红外线式…等。前3种技术因为构装体积较小,精密度相对可以做得较高,因此适用于体积较小巧的随身行动装置或是消费性电子上,而就成本而言,电阻式、表面电容式、投射电容式成本并不会太高,不会因为整合这些触控技术而让商品成本增加太多。
至于表面声波、红外线…等技术,在感测触按的精密度表现略逊于电阻式、表面电容式、投射电容式触控,而且构装硬件的体积较大,较适合用于显示区域相对较大,甚至对于触控相对要求较不精密的大型显示面板,像是户外尺寸较大的公众显示器、电子白板…等应用场合。
以目前触控屏幕用量最多的应用来说,小尺寸的电子商品,可以是选用触控技术最丰富多元的应用场合,因为触控技术可以解决过往操控按键过多的问题,加速消费者应用信息产品的学习曲线,甚至提升操作效率与对品牌的正面印象!像是以前1部DV摄影机,少说也要设置20~30种大小操控按键,这种设计无疑是把没有操作经验的首次购买DV者拒于门外。
而有了触控屏幕或触控接口整合,可以将DV操控按键减少一半甚至仅剩10个必要按键就能处理整部DV所有操作,而iPhone更把一部至少需要20键的行动电话设计,减少到仅需3、4键就能搞定,剩余进阶操作全由触控屏幕取代,这已是新一代3C计算机商品的设计趋势,没跟上潮流就会被是场所淘汰。
电阻式触控屏幕
电阻式触控屏幕,在技术原理上或许不能全然以「触控式」屏幕来称呼!因为电阻式的技术原理是利用散布于2片透明薄膜的导电端点,透过屏幕表面的压按动作,去侦测这些端点的导电或是断电状态,导电点即为对应的触控点!
就技术原理来观察,其实电阻式触控更像屏幕布满一堆开关,就技术实际应用面观察,对于触控应该更像是手指接触或是还没接触前,就能感应到手指在屏幕前的位置才更为精确!但电阻式触控技术毕竟还是能完成「类触控」的操作体验,而且此技术也是目前成本较低、使用最广泛的触控技术。
电阻式触控屏幕,是采2层镀上有导电能力的ITO(铟锡氧化物)的PET塑料膜,PET本身具有一定程度的透明度与耐用度,而2片ITO间设有微粒支点,避免未压按屏幕时让2层ITO保有一定的空气层,让ITO间能有一定处于Off未导电状态的空气间隙,而当操作者利用指尖或是笔尖压按屏幕表面(PET膜外层)时,压力将使PET膜内凹,使得2层ITO因变形而使铟锡氧化物导电层接触导电,经由侦测x、y轴电压变化换算出对应的压力点,完成整个屏幕触按处理机制。
目前电阻式触按技术,已知有4线、5线、6线与8线版本,当线数愈多,代表可侦测的触按面积和精密度相对提高,这些触按信息也会送至微处理器运算、执行,因为此技术成本低廉,目前已大量用于电子商品上!
观察电阻式触按技术可以发现,触按重屏幕触发到触控点侦测运算、完成,技术上有物理条件上的限制!怎么说呢?电阻式技术想要增加侦测面积、分辨率,最直接的方法就是增加线数,但线数一拉高就代表处理运算数据相对增加,对处理器将是一大负担,为提升效能成本也是问题。
而触按机制确认主要是由机械式的动作完成,PET膜再怎么强化材质提升耐压、抗变形、耐磨条件,毕竟还是有其极限,如此一来会造成透明度会因使用时间、频率增加表现愈来愈差,至于触按点侦测也会因经常性触点就那几处,造成特定区过度使用磨损,减低铟锡氧化物导电层接触导通效率。
此外,电阻式触控另有其物理性不利条件限制,例如ITO膜一定要预留边框,限制工业设计上的可选择性,触控屏幕厚度、光学效能不足,另无法达到近侧侦查(手指靠近侦测未触按状态),与技术较难处理多指触按要求,都限制了电阻式触按技术的未来应用条件。
表面电容式(Surface Capacitive)
表面电容式触控技术,是利用具金属边缘的平板铟锡氧化物ITO,透过电场感应方式感测屏幕表面的触控行为进行。由于电场几乎布满整个铟锡氧化物表面,当手指触压屏幕时,它会从面板侧发出电荷,由于电荷感侧是由四处同时进行,因此触控面板不用使用高精密度的铟锡氧化物模板,就能完成整个触按点触发、定位、输出…等程序。
运用表面电容式触控技术,最具标竿的是Microtouch(目前为3M)拥有的电容触控专利,这类型的触控屏幕是William Pepper发明,并于1978年申请取得专利。
但表面电容式并非完美的触控解决方案,虽然表面电容式不须使用铟锡氧化物模板,而且也有电阻式触控没有的近侧感应效果,但实际上,电容式触控却有「手影效应」的问题存在!
所谓「手影效应」是指,当操作者在表面电容感应式触控屏幕进行操作时,若操作者将手腕与手指一同靠近屏幕表面,会使得铟锡氧化物模板表层,面板侧发出过多电荷,使电容产生耦合导致大量感侧错误,因为表面电容屏幕是同性质的堆栈设计。
在这种状况下,会使真正的侦测触点讯号与错误的侦测触点讯号产生混淆,让真实的触点讯号与错误的讯号同时出现在3个讯号区间,错误的讯号致使真实触点侦测无法被正确识别出来,若错误讯号无法有效抑制,将使整个触按、侦测、输出坐标讯息过程,出现许多出乎意料的讯息状态。
除「手影效应」外,表面电容式也有一些应用上的限制!由于是透过屏幕表面电场变化进行触点侦测,使用环境若电磁干扰问题较多,就会因此影响侦测触点的精密度,而长时间应用后,触点侦测也容易产生偏移,因此需要定时或是经常性校准。
比较新颖的做法,虽然同样也是利用透明电极与人体间结合产生的电容变化,从而产生的诱导电流进行侦测触点做表,但透过面板感应区4个角落产生,在面板表面形成均匀电场,手指触动时电场引起的电流由控制器侦测4处流强弱比例,换算出触点位置,透过控制器强化错误讯号抑制技术,将表面电容式触控技术的实用性大幅强化。
表面电容式触控技术,由于不用使用高精密度的铟锡氧化物模板,制造成本可压低,利用电场感应可以在触按者接近屏幕前,即处理近侧感应侦测,这对操作UI使用效率而言,可以增加消费者使用产品的正面体验。
甚至于,由于表面电容式触按感侧没有电阻式的机械结构,因此不会有磨损、ITO层出现类似机械疲乏的触按灵敏度下滑问题,利用控制器即可调整面板对于触压信号的处理灵敏度设计,对面板的使用寿命也有强化效果。
投射电容式(Projective Capacitive)
投射电容式触控技术,根基的技术原理依旧还是以电容感应为主,基本上仍是电容是触控面板的延伸应用观念。技术上是利用经严谨设计1个或多个蚀刻后的铟锡氧化物模板,增加数组(组数愈多感测精度与丰富度相对较高)存在不同平面、同时又相互垂直的透明导线形成类似x、y轴驱动线而构成。
而这些导线都是由电容感测芯片控制,当电流经驱动线驱动其中的导线时,与侦测电容值变化的导线相通,控制芯片依序轮流下载侦测电容值变化数据至主控制器,确认触点位置后,由于透明导线早在面板形成3维电场,因此触点的近测感应不须触按屏幕即可发生,甚至此技术可以做到z轴感应分辨应用。
投射电容式若用较简单的说法,可以说是根据屏幕表面的x、y轴电极讯号分布改变状态,进而计算出屏幕表面实际触点的交叉几何坐标,目前此技术已知已可在5mm厚的面板达到1,024 x 1,024触点侦测分辨率。
Apple的iPhone让触控面板产业重新被重视,以往触控面板控制器技术,多以「4线电阻式」技术为主,而iPhone改采投射电容式技术触控面板,让触控行为侦测更细致,由于具近场侦测与较高的灵敏度,亦可避免刮损及屏幕破裂问题。
据isuppli预测2008年全球触控手机,仍以电组触控技术为主,产值可达4,900万美元,预估2012年将达6,500万美元;投射电容式触控技术,2008产值虽只有1,000美元,占整体市场17%,isuppli估计,2012年投射电容式产值将突破2千万美元,市场比重跃升至23%。
投射式电容拥有支持多点触控优势,只需指腹轻触无须使用触控笔,拥有更高屏幕透光率,整体功耗将更省电,增加使用寿命且无需校正…等优点,电阻式龙头地位将备受挑战。